1) Base of hexadecimal number system? Answer : 16 2) Universal gate in digital logic? Answer : NAND 3) Memory type that is non-volatile? Answer : ROM 4) Basic building block of digital circuits? Answer : Gate 5) Device used for data storage in sequential circuits? Answer : Flip-flop 6) Architecture with shared memory for instructions and data? Answer : von Neumann 7) The smallest unit of data in computing? Answer : Bit 8) Unit that performs arithmetic operations in a CPU? Answer : ALU 9) Memory faster than main memory but smaller in size? Answer : Cache 10) System cycle that includes fetch, decode, and execute? Answer : Instruction 11) Type of circuit where output depends on present input only? Answer : Combinational 12) The binary equivalent of decimal 10? Answer : 1010 13) Memory used for high-speed temporary storage in a CPU? Answer : Register 14) Method of representing negative numbers in binary? Answer : Two's complement 15) Gate that inverts its input signal? Answer : NOT 16)
Oscillations: The Rhythmic Heartbeat of Physics Oscillations describe any system that moves back and forth in a periodic manner. The most familiar example might be the swinging of a pendulum, but oscillatory behavior occurs in countless natural systems, from the vibrations of molecules to the orbits of celestial bodies. Key Concepts in Oscillations: Simple Harmonic Motion (SHM) : This is the most basic type of oscillation, where the restoring force acting on an object is proportional to its displacement. Classic examples include a mass on a spring or a pendulum swinging with small amplitudes. The equations governing SHM are simple, but they form the basis for understanding more complex oscillatory systems. Damped and Driven Oscillations : In real-world systems, oscillations tend to lose energy over time due to friction or air resistance, leading to damped oscillations . In contrast, driven oscillations occur when an external force continuously adds energy to the system, preventing i