Skip to main content

PROBLEM SOLVING AND PYTHON PROGRAMMING QUIZ

1) What is the first step in problem-solving? A) Writing code B) Debugging C) Understanding the problem D) Optimizing the solution Answer: C 2) Which of these is not a step in the problem-solving process? A) Algorithm development B) Problem analysis C) Random guessing D) Testing and debugging Answer: C 3) What is an algorithm? A) A high-level programming language B) A step-by-step procedure to solve a problem C) A flowchart D) A data structure Answer: B 4) Which of these is the simplest data structure for representing a sequence of elements? A) Dictionary B) List C) Set D) Tuple Answer: B 5) What does a flowchart represent? A) Errors in a program B) A graphical representation of an algorithm C) The final solution to a problem D) A set of Python modules Answer: B 6) What is pseudocode? A) Code written in Python B) Fake code written for fun C) An informal high-level description of an algorithm D) A tool for testing code Answer: C 7) Which of the following tools is NOT commonly used in pr...

Deadlock Characterisation

Deadlock Characterization
Necessary Conditions:
There are four conditions that are required to achieve deadlock:
Mutual Exclusion - At least one resource must be grip in a non-sharable mode; If any other process requests this resource, then that process must wait for the resource to be released.
Hold and Wait - A process must be concurrently gripping at least one resource and waiting for at least one resource that is presently being grip by some other process.
No preemption - Once a process is belonging a resource ( i.e. once its request has been allowed ), then that resource not be taken away from that process until the process freely releases it.
Circular Wait - A group of processes { P0, P1, P2, . . ., PN } must exist such that every P[ i ] is waiting for P[ ( i + 1 ) % ( N + 1 ) ]. ( Note that this situation implied the hold-and-wait condition, but it is easier to deal with the conditions if the four are considered individually. )
Resource-Allocation Graph
In some cases deadlocks can be register more clearly through the use of Resource-Allocation Graphs, having the following properties:
*A group of resource categories, { R1, R2, R3, . . ., RN }, which looks as square nodes on the graph. Dots inside the resource nodes implicate specific instances of the resource. ( E.g. two dots might consider two laser printers. )
*A group of processes, { P1, P2, P3, . . ., PN }
*Request Edges - A group of directed arcs from Pi to Rj, indicating that process Pi has requested Rj, and is presently waiting for that resource to become obtainable.
*Assignment Edges - A group of directed arcs from Rj to Pi implies that resource Rj has been assigned to process Pi, and that Pi is presently holding resource Rj.
Note that a request edge can be transferred into an assignment edge by reversing the direction of the arc when the request is allowed. ( However note also that request edges point to the classification box, whereas assignment edges begin from a particular instance dot within the box. )
For example:
*If a resource-allocation graph has no cycles, then the system is not deadlocked. ( When looking for cycles, recollect that these are directed graphs. ) See the example in Fig above.
*If a resource-allocation graph does consist cycles AND each resource category contains only a single instance, then a deadlock exists.
*If a resource groups contains more than one occasion, then the presence of a cycle in the resource-allocation graph indicates the possibility of a deadlock, but does not guarantee one. 
Methods for Handling Deadlocks
Normally speaking there are three types of handling deadlocks:
Deadlock prevention or avoidance - Do not permit the system to get into a deadlocked state.
Deadlock detection and recovery - End a process or preempt some resources when deadlocks are detected.
Ignore the problem all together - If deadlocks only happen once a year or so, it may be better to simply let them happen and restart as necessary than to attract the constant overhead and system performance penalties associated with deadlock preventing or detecting. This is the method that both Windows and UNIX take.
In order to prevent deadlocks, the system must have additional information about all processes. In particular, the system must know what resources a process will or may request in the future. ( Ranging 
from a simple worst-case maximum to a complete resource request and release plan for each process, depending on the particular algorithm. )
Deadlock detection is fairly straightforward, but deadlock retrieval requires either ending processes or preventing resources, neither of which is an attractive alternative.
If deadlocks are neither detected nor prevented, then when a deadlock happens the system will gradually slow down, as more and more processes become stuck waiting for resources currently held by the deadlock and by other waiting processes. Unfortunately this slowdown can be identical from a general system slowdown when a real-time process has heavy computing needs.

Popular posts from this blog

Abbreviations

No :1 Q. ECOSOC (UN) Ans. Economic and Social Commission No: 2 Q. ECM Ans. European Comman Market No : 3 Q. ECLA (UN) Ans. Economic Commission for Latin America No: 4 Q. ECE (UN) Ans. Economic Commission of Europe No: 5 Q. ECAFE (UN)  Ans. Economic Commission for Asia and the Far East No: 6 Q. CITU Ans. Centre of Indian Trade Union No: 7 Q. CIA Ans. Central Intelligence Agency No: 8 Q. CENTO Ans. Central Treaty Organization No: 9 Q. CBI Ans. Central Bureau of Investigation No: 10 Q. ASEAN Ans. Association of South - East Asian Nations No: 11 Q. AITUC Ans. All India Trade Union Congress No: 12 Q. AICC Ans. All India Congress Committee No: 13 Q. ADB Ans. Asian Development Bank No: 14 Q. EDC Ans. European Defence Community No: 15 Q. EEC Ans. European Economic Community No: 16 Q. FAO Ans. Food and Agriculture Organization No: 17 Q. FBI Ans. Federal Bureau of Investigation No: 18 Q. GATT Ans. General Agreement on Tariff and Trade No: 19 Q. GNLF Ans. Gorkha National Liberation Front No: ...

ELECTROMAGNETIC WAVES

Understanding Electromagnetic Waves: The Invisible Messengers of Energy Electromagnetic (EM) waves are everywhere around us, shaping the way we live and communicate, though most of the time we are unaware of their presence. From the light we see to the signals carrying our favorite songs on the radio, EM waves play a fundamental role in both nature and modern technology. In this post, we’ll explore the nature of electromagnetic waves, their types, and their significance in daily life. What Are Electromagnetic Waves? At their core, electromagnetic waves are fluctuations of electric and magnetic fields that travel through space. Unlike sound waves, which need a medium like air or water to propagate, electromagnetic waves can travel through a vacuum. This means they can traverse the vast emptiness of space, which is how sunlight reaches Earth from the Sun. The discovery of electromagnetic waves is credited to James Clerk Maxwell in the 19th century. He formulated a set of equations—now kn...

Introduction to C Programs

INTRODUCTION The programming language ‘C’ was developed by Dennis Ritchie in the early 1970s at Bell Laboratories. Although C was first developed for writing system software, today it has become such a famous language that a various of software programs are written using this language. The main advantage of using C for programming is that it can be easily used on different types of computers. Many other programming languages such as C++ and Java are also based on C which means that you will be able to learn them easily in the future. Today, C is mostly used with the UNIX operating system. Structure of a C program A C program contains one or more functions, where a function is defined as a group of statements that perform a well-defined task.The program defines the structure of a C program. The statements in a function are written in a logical series to perform a particular task. The most important function is the main() function and is a part of every C program. Rather, the execution o...