Skip to main content

Smart Grids and Energy Storage Systems

Smart Grids and Energy Storage Systems: Powering the Future of Energy In today’s rapidly evolving energy landscape, the push towards sustainability, efficiency, and reliability is stronger than ever. Traditional power grids, though robust in their time, are no longer sufficient to meet the demands of a modern, digital, and environmentally conscious society. This is where smart grids and energy storage systems (ESS) come into play — revolutionizing how electricity is generated, distributed, and consumed. What is a Smart Grid? A smart grid is an advanced electrical network that uses digital communication, automation, and real-time monitoring to optimize the production, delivery, and consumption of electricity. Unlike conventional grids, which operate in a one-way flow (from generation to end-user), smart grids enable a two-way flow of information and energy. Key Features of Smart Grids: Real-time monitoring of power usage and quality. Automated fault detection and rapid restoration. Int...

Deadlock Characterisation

Deadlock Characterization
Necessary Conditions:
There are four conditions that are required to achieve deadlock:
Mutual Exclusion - At least one resource must be grip in a non-sharable mode; If any other process requests this resource, then that process must wait for the resource to be released.
Hold and Wait - A process must be concurrently gripping at least one resource and waiting for at least one resource that is presently being grip by some other process.
No preemption - Once a process is belonging a resource ( i.e. once its request has been allowed ), then that resource not be taken away from that process until the process freely releases it.
Circular Wait - A group of processes { P0, P1, P2, . . ., PN } must exist such that every P[ i ] is waiting for P[ ( i + 1 ) % ( N + 1 ) ]. ( Note that this situation implied the hold-and-wait condition, but it is easier to deal with the conditions if the four are considered individually. )
Resource-Allocation Graph
In some cases deadlocks can be register more clearly through the use of Resource-Allocation Graphs, having the following properties:
*A group of resource categories, { R1, R2, R3, . . ., RN }, which looks as square nodes on the graph. Dots inside the resource nodes implicate specific instances of the resource. ( E.g. two dots might consider two laser printers. )
*A group of processes, { P1, P2, P3, . . ., PN }
*Request Edges - A group of directed arcs from Pi to Rj, indicating that process Pi has requested Rj, and is presently waiting for that resource to become obtainable.
*Assignment Edges - A group of directed arcs from Rj to Pi implies that resource Rj has been assigned to process Pi, and that Pi is presently holding resource Rj.
Note that a request edge can be transferred into an assignment edge by reversing the direction of the arc when the request is allowed. ( However note also that request edges point to the classification box, whereas assignment edges begin from a particular instance dot within the box. )
For example:
*If a resource-allocation graph has no cycles, then the system is not deadlocked. ( When looking for cycles, recollect that these are directed graphs. ) See the example in Fig above.
*If a resource-allocation graph does consist cycles AND each resource category contains only a single instance, then a deadlock exists.
*If a resource groups contains more than one occasion, then the presence of a cycle in the resource-allocation graph indicates the possibility of a deadlock, but does not guarantee one. 
Methods for Handling Deadlocks
Normally speaking there are three types of handling deadlocks:
Deadlock prevention or avoidance - Do not permit the system to get into a deadlocked state.
Deadlock detection and recovery - End a process or preempt some resources when deadlocks are detected.
Ignore the problem all together - If deadlocks only happen once a year or so, it may be better to simply let them happen and restart as necessary than to attract the constant overhead and system performance penalties associated with deadlock preventing or detecting. This is the method that both Windows and UNIX take.
In order to prevent deadlocks, the system must have additional information about all processes. In particular, the system must know what resources a process will or may request in the future. ( Ranging 
from a simple worst-case maximum to a complete resource request and release plan for each process, depending on the particular algorithm. )
Deadlock detection is fairly straightforward, but deadlock retrieval requires either ending processes or preventing resources, neither of which is an attractive alternative.
If deadlocks are neither detected nor prevented, then when a deadlock happens the system will gradually slow down, as more and more processes become stuck waiting for resources currently held by the deadlock and by other waiting processes. Unfortunately this slowdown can be identical from a general system slowdown when a real-time process has heavy computing needs.

Popular posts from this blog

Abbreviations

No :1 Q. ECOSOC (UN) Ans. Economic and Social Commission No: 2 Q. ECM Ans. European Comman Market No : 3 Q. ECLA (UN) Ans. Economic Commission for Latin America No: 4 Q. ECE (UN) Ans. Economic Commission of Europe No: 5 Q. ECAFE (UN)  Ans. Economic Commission for Asia and the Far East No: 6 Q. CITU Ans. Centre of Indian Trade Union No: 7 Q. CIA Ans. Central Intelligence Agency No: 8 Q. CENTO Ans. Central Treaty Organization No: 9 Q. CBI Ans. Central Bureau of Investigation No: 10 Q. ASEAN Ans. Association of South - East Asian Nations No: 11 Q. AITUC Ans. All India Trade Union Congress No: 12 Q. AICC Ans. All India Congress Committee No: 13 Q. ADB Ans. Asian Development Bank No: 14 Q. EDC Ans. European Defence Community No: 15 Q. EEC Ans. European Economic Community No: 16 Q. FAO Ans. Food and Agriculture Organization No: 17 Q. FBI Ans. Federal Bureau of Investigation No: 18 Q. GATT Ans. General Agreement on Tariff and Trade No: 19 Q. GNLF Ans. Gorkha National Liberation Front No: ...

Operations on data structures

OPERATIONS ON DATA STRUCTURES This section discusses the different operations that can be execute on the different data structures before mentioned. Traversing It means to process each data item exactly once so that it can be processed. For example, to print the names of all the employees in a office. Searching It is used to detect the location of one or more data items that satisfy the given constraint. Such a data item may or may not be present in the given group of data items. For example, to find the names of all the students who secured 100 marks in mathematics. Inserting It is used to add new data items to the given list of data items. For example, to add the details of a new student who has lately joined the course. Deleting It means to delete a particular data item from the given collection of data items. For example, to delete the name of a employee who has left the office. Sorting Data items can be ordered in some order like ascending order or descending order depending ...

Points to Remember

• A data structure is a particular way of storing and organizing data either in computer’s memory or on the disk storage so that it can be used efficiently. • There are two types of data structures: primitive and non-primitive data structures. Primitive data structures are the fundamental data types which  are supported by a programming language. Non-primitive data structures are those data structures which are created using primitive data structures. • Non-primitive data structures can further be classified into two categories: linear and non-linear data structures.  • If the elements of a data structure are stored in a linear or sequential order, then it is a linear data structure. However, if the elements of a data structure are not stored in sequential order, then it is a non-linear data structure.  • An array is a collection of similar data elements which are stored in consecutive memory locations. • A linked list is a linear data structure consisting of a grou...