Skip to main content

Cloud computing in engineering workflows

Cloud Computing in Engineering Workflows:   Transforming Design, Collaboration, and Innovation In today’s fast-paced engineering landscape, the need for speed, scalability, and seamless collaboration is greater than ever. Traditional engineering workflows often relied on on-premises servers, powerful local machines, and fragmented communication tools. But as projects grow in complexity and teams become more global, these systems can no longer keep up. This is where cloud computing steps in—reshaping how engineers design, simulate, collaborate, and deliver results. What is Cloud Computing in Engineering? Cloud computing refers to the use of remote servers hosted on the internet to store, process, and analyze data. Instead of being limited by the hardware capacity of a single computer or office server, engineers can leverage vast, scalable computing resources from cloud providers. This shift enables engineers to run simulations, share designs, and manage data more efficiently. Key Be...

DEADLOCK

DEAD LOCKS
System Model
● For the purposes of deadlock discussion, a system can be modeled as a collection of limited resources, which can be splitted into different classes, to be allocated to a number of processes, each having different needs.
● Resource classes may adds memory, printers, CPUs, open files, tape drives, CD-ROMS, etc.
● By definition, all the resources within a classification are equivalent, and a request of this category can be equally satisfied by any one of the resources in that category. If this is not the instance ( i.e. if there is some difference between the resources within a class ), then that class needs to be 
further divided into separate categories. For example, "printers" may require to be separated into "laser printers" and "color inkjet printers".
● Some classification may have a single resource.
● In normal performance a process must request a resource before using it, and release it when it is complete, in the following sequence:
1. Request - If the request cannot be immediately allowed, then the process must wait until the resource(s) it needs become available. Example: system calls open( ), malloc( ), new( ), and request( ).
2. Use - The process make use of the resource.
Example: prints to the printer or reads from the file.
3. Release - The process relinquishes the resource. so that it becomes obtainable for other processes. 
Example:close( ) free( ) delete( ) and release( ).
● For all kernel-managed resources, the kernel keeps trace of what resources are free and which are allocated, to which process they are allocated, and a queue of processes waiting for this resource 
to become available. Application-managed resources can be controlled utilize mutexes or wait( ) and signal( ) calls, ( i.e. binary or counting semaphores. )
● A group of processes is deadlocked when every process in the group is waiting for a resource that is presently assignedto another process in the group (and which can only be freed when that other 
waiting process makes progress. )



Popular posts from this blog

Abbreviations

No :1 Q. ECOSOC (UN) Ans. Economic and Social Commission No: 2 Q. ECM Ans. European Comman Market No : 3 Q. ECLA (UN) Ans. Economic Commission for Latin America No: 4 Q. ECE (UN) Ans. Economic Commission of Europe No: 5 Q. ECAFE (UN)  Ans. Economic Commission for Asia and the Far East No: 6 Q. CITU Ans. Centre of Indian Trade Union No: 7 Q. CIA Ans. Central Intelligence Agency No: 8 Q. CENTO Ans. Central Treaty Organization No: 9 Q. CBI Ans. Central Bureau of Investigation No: 10 Q. ASEAN Ans. Association of South - East Asian Nations No: 11 Q. AITUC Ans. All India Trade Union Congress No: 12 Q. AICC Ans. All India Congress Committee No: 13 Q. ADB Ans. Asian Development Bank No: 14 Q. EDC Ans. European Defence Community No: 15 Q. EEC Ans. European Economic Community No: 16 Q. FAO Ans. Food and Agriculture Organization No: 17 Q. FBI Ans. Federal Bureau of Investigation No: 18 Q. GATT Ans. General Agreement on Tariff and Trade No: 19 Q. GNLF Ans. Gorkha National Liberation Front No: ...

Operations on data structures

OPERATIONS ON DATA STRUCTURES This section discusses the different operations that can be execute on the different data structures before mentioned. Traversing It means to process each data item exactly once so that it can be processed. For example, to print the names of all the employees in a office. Searching It is used to detect the location of one or more data items that satisfy the given constraint. Such a data item may or may not be present in the given group of data items. For example, to find the names of all the students who secured 100 marks in mathematics. Inserting It is used to add new data items to the given list of data items. For example, to add the details of a new student who has lately joined the course. Deleting It means to delete a particular data item from the given collection of data items. For example, to delete the name of a employee who has left the office. Sorting Data items can be ordered in some order like ascending order or descending order depending ...

The Rise of Solar and Wind Energy: A Glimpse into a Sustainable Future

In the quest for a sustainable future, solar and wind energy systems have emerged as two of the most promising sources of renewable energy. As concerns about climate change and the depletion of fossil fuels grow, these technologies offer a pathway to a cleaner, more resilient energy grid. This blog post delves into the significance of solar and wind energy, their benefits, challenges, and the role they play in shaping a sustainable future. The Basics of Solar and Wind Energy Solar Energy Systems harness the power of the sun to generate electricity. The most common technology used is photovoltaic (PV) panels, which convert sunlight directly into electricity. Solar thermal systems, another approach, use mirrors or lenses to concentrate sunlight, generating heat that can be used to produce electricity. Solar energy is abundant, renewable, and available almost everywhere on Earth. Wind Energy Systems utilize wind turbines to convert the kinetic energy of wind into electrical energy. Thes...