Skip to main content

Noise Pollution Control in Industries: Strategies and Solutions

Noise pollution is a significant environmental issue, particularly in industrial settings. The constant hum of machinery, the clanging of metal, and the roar of engines contribute to a cacophony that can have serious health implications for workers and nearby residents. Addressing noise pollution in industries is not only a matter of regulatory compliance but also a crucial step in ensuring the well-being of employees and the community. Understanding Noise Pollution in Industries Industrial noise pollution stems from various sources such as heavy machinery, generators, compressors, and transportation vehicles. Prolonged exposure to high levels of noise can lead to hearing loss, stress, sleep disturbances, and cardiovascular problems. Beyond health impacts, noise pollution can also reduce productivity, increase error rates, and contribute to workplace accidents. Regulatory Framework Many countries have established regulations and standards to limit industrial noise. Organizations like t

DEADLOCK

DEAD LOCKS
System Model
● For the purposes of deadlock discussion, a system can be modeled as a collection of limited resources, which can be splitted into different classes, to be allocated to a number of processes, each having different needs.
● Resource classes may adds memory, printers, CPUs, open files, tape drives, CD-ROMS, etc.
● By definition, all the resources within a classification are equivalent, and a request of this category can be equally satisfied by any one of the resources in that category. If this is not the instance ( i.e. if there is some difference between the resources within a class ), then that class needs to be 
further divided into separate categories. For example, "printers" may require to be separated into "laser printers" and "color inkjet printers".
● Some classification may have a single resource.
● In normal performance a process must request a resource before using it, and release it when it is complete, in the following sequence:
1. Request - If the request cannot be immediately allowed, then the process must wait until the resource(s) it needs become available. Example: system calls open( ), malloc( ), new( ), and request( ).
2. Use - The process make use of the resource.
Example: prints to the printer or reads from the file.
3. Release - The process relinquishes the resource. so that it becomes obtainable for other processes. 
Example:close( ) free( ) delete( ) and release( ).
● For all kernel-managed resources, the kernel keeps trace of what resources are free and which are allocated, to which process they are allocated, and a queue of processes waiting for this resource 
to become available. Application-managed resources can be controlled utilize mutexes or wait( ) and signal( ) calls, ( i.e. binary or counting semaphores. )
● A group of processes is deadlocked when every process in the group is waiting for a resource that is presently assignedto another process in the group (and which can only be freed when that other 
waiting process makes progress. )



Popular posts from this blog

FIRM

          A firm is an organisation which converts inputs into outputs and it sells. Input includes the factors of production (FOP). Such as land, labour, capital and organisation. The output of the firm consists of goods and services they produce.           The firm's are also classified into categories like private sector firms, public sector firms, joint sector firms and not for profit firms. Group of firms include Universities, public libraries, hospitals, museums, churches, voluntary organisations, labour unions, professional societies etc. Firm's Objectives:            The objectives of the firm includes the following 1. Profit Maximization:           The traditional theory of firms objective is to maximize the amount of shortrun profits. The public and business community define profit as an accounting concept, it is the difference between total receipts and total profit. 2. Firm's value Maximization:           Firm's are expected to operate for a long period, the

Introduction to C Programs

INTRODUCTION The programming language ‘C’ was developed by Dennis Ritchie in the early 1970s at Bell Laboratories. Although C was first developed for writing system software, today it has become such a famous language that a various of software programs are written using this language. The main advantage of using C for programming is that it can be easily used on different types of computers. Many other programming languages such as C++ and Java are also based on C which means that you will be able to learn them easily in the future. Today, C is mostly used with the UNIX operating system. Structure of a C program A C program contains one or more functions, where a function is defined as a group of statements that perform a well-defined task.The program defines the structure of a C program. The statements in a function are written in a logical series to perform a particular task. The most important function is the main() function and is a part of every C program. Rather, the execution o

Human Factors in Designing User-Centric Engineering Solutions

Human factors play a pivotal role in the design and development of user-centric engineering solutions. The integration of human-centered design principles ensures that technology not only meets functional requirements but also aligns seamlessly with users' needs, abilities, and preferences. This approach recognizes the diversity among users and aims to create products and systems that are intuitive, efficient, and enjoyable to use. In this exploration, we will delve into the key aspects of human factors in designing user-centric engineering solutions, examining the importance of user research, usability, accessibility, and the overall user experience. User Research: Unveiling User Needs and Behaviors At the core of human-centered design lies comprehensive user research. Understanding the target audience is fundamental to creating solutions that resonate with users. This involves studying user needs, behaviors, and preferences through various methodologies such as surveys, interview