Skip to main content

Noise Pollution Control in Industries: Strategies and Solutions

Noise pollution is a significant environmental issue, particularly in industrial settings. The constant hum of machinery, the clanging of metal, and the roar of engines contribute to a cacophony that can have serious health implications for workers and nearby residents. Addressing noise pollution in industries is not only a matter of regulatory compliance but also a crucial step in ensuring the well-being of employees and the community. Understanding Noise Pollution in Industries Industrial noise pollution stems from various sources such as heavy machinery, generators, compressors, and transportation vehicles. Prolonged exposure to high levels of noise can lead to hearing loss, stress, sleep disturbances, and cardiovascular problems. Beyond health impacts, noise pollution can also reduce productivity, increase error rates, and contribute to workplace accidents. Regulatory Framework Many countries have established regulations and standards to limit industrial noise. Organizations like t

Deadlock detection

Deadlock Detection
i. If deadlocks are not avoided, then another method is to detect when they have occurred and recover 
somehow.
ii. In addition to the performance hit of frequently checking for deadlocks, a policy / algorithm must be in place for recovering from deadlocks, and there is potential for lost work when processes must be deleted or have their resources prevented.

Single Instance of Each Resource Type
i. If each resource category has a single instance, then we can use a variation of the resource-allocation
graph known as a wait-for graph.
ii. A wait-for graph can be built from a resource-allocation graph by eliminating the resources and collapsing the associated edges, as shown in the figure below.
iii) An arc from Pi to Pj in a wait-for graph implies that process Pi is waiting for a resource that process Pj is currently holding.
As before, cycles in the wait-for graph imply deadlocks.
This algorithm must maintain the wait-for graph, and constantly search it for cycles.

Several Instances of a Resource Type Available:
A vector of length m implies the number of available resources of each type.
Allocation: An n x m matrix defines the number of resources of each type presently assigned to each process.
Request: An n x m matrix implies the current request of each process. If Request [ij] = k, then process 
Pi is requesting k more occurence of resource type. Rj . 

Detection Algorithm
1. Let Work and Finish be vectors of length m and n, accordingly Initialize: 
(a) Work = Available(b) For i = 1,2, …, n,
if Allocationi != 0, then 
Finish[i] = false;
otherwise,
Finish[i] = true
2. Find an index i similar that both: 
(a) Finish[i] == false
(b) Requesti <=Work
If no such i exists, go to step 4 
3. 3. Work = Work + Allocationi 
Finish[i] = true go to step 2
4. If Finish[i] == false, for some i, 1 <= i <=n, then the system is in deadlock state.
Moreover, if Finish[i] == false, then Pi is deadlocked 
Algorithm requires an order of O(m x n2) operations to detect whether the system is in deadlocked 
state.
Example of Detection Algorithm
Five processes P0 through P4; three resource types A (7 instances), B (2instances), and C (6 instances) Snapshot at time T0:
Now suppose that process P2 makes a request for an additional instance of type C, yielding the state shown below. Is the system now deadlocked?
Detection-Algorithm Usage
i. When should the deadlock detection be done? Frequently, or infrequently?
The answer may depend on how frequently deadlocks are expected to occur, as well as the possible consequences of not catching them immediately.(If deadlocks are not removed immediately when they occur, then more and more processes can "back up" behind the deadlock, making the eventual task of 
unblocking the system more difficult and possibly damaging to more processes. )
ii. There are two obvious approaches, each with trade-offs:
1) Do deadlock detection after every resource allocation which cannot be immediately granted. This has the advantage of detecting the deadlock right away, while the minimum number of processes are involved in the deadlock (One might consider that the process whose request triggered the deadlock condition is the "cause" of the deadlock, but realistically all of the processes in the cycle are equally responsible for the resulting deadlock. ) The down side of this approach is the extensive overhead and performance hit caused by checking for deadlocks so frequently.
 2) Do deadlock detection only when there is some clue that a deadlock may have occurred, such as when CPU utilization reduces to 40% or some other magic number. The advantage is that deadlock detection is done much less frequently, but the down side is that it becomes impossible to detect the processes involved in the original deadlock, and so deadlock recovery can be more complicated and damaging to more processes.
 3) ( As I write this, a third alternative comes to mind: Keep a historical log of resource allocations, since that last known time of no deadlocks. Do deadlock checks periodically ( once an hour or when CPU usage is low?), and then use the historical log to trace through and determine when the deadlock occurred and what processes caused the initial deadlock. Unfortunately I'm not certain that breaking the original deadlock would then free up the resulting log jam. )


Popular posts from this blog

FIRM

          A firm is an organisation which converts inputs into outputs and it sells. Input includes the factors of production (FOP). Such as land, labour, capital and organisation. The output of the firm consists of goods and services they produce.           The firm's are also classified into categories like private sector firms, public sector firms, joint sector firms and not for profit firms. Group of firms include Universities, public libraries, hospitals, museums, churches, voluntary organisations, labour unions, professional societies etc. Firm's Objectives:            The objectives of the firm includes the following 1. Profit Maximization:           The traditional theory of firms objective is to maximize the amount of shortrun profits. The public and business community define profit as an accounting concept, it is the difference between total receipts and total profit. 2. Firm's value Maximization:           Firm's are expected to operate for a long period, the

Introduction to C Programs

INTRODUCTION The programming language ‘C’ was developed by Dennis Ritchie in the early 1970s at Bell Laboratories. Although C was first developed for writing system software, today it has become such a famous language that a various of software programs are written using this language. The main advantage of using C for programming is that it can be easily used on different types of computers. Many other programming languages such as C++ and Java are also based on C which means that you will be able to learn them easily in the future. Today, C is mostly used with the UNIX operating system. Structure of a C program A C program contains one or more functions, where a function is defined as a group of statements that perform a well-defined task.The program defines the structure of a C program. The statements in a function are written in a logical series to perform a particular task. The most important function is the main() function and is a part of every C program. Rather, the execution o

Human Factors in Designing User-Centric Engineering Solutions

Human factors play a pivotal role in the design and development of user-centric engineering solutions. The integration of human-centered design principles ensures that technology not only meets functional requirements but also aligns seamlessly with users' needs, abilities, and preferences. This approach recognizes the diversity among users and aims to create products and systems that are intuitive, efficient, and enjoyable to use. In this exploration, we will delve into the key aspects of human factors in designing user-centric engineering solutions, examining the importance of user research, usability, accessibility, and the overall user experience. User Research: Unveiling User Needs and Behaviors At the core of human-centered design lies comprehensive user research. Understanding the target audience is fundamental to creating solutions that resonate with users. This involves studying user needs, behaviors, and preferences through various methodologies such as surveys, interview