Skip to main content

Cloud computing in engineering workflows

Cloud Computing in Engineering Workflows:   Transforming Design, Collaboration, and Innovation In today’s fast-paced engineering landscape, the need for speed, scalability, and seamless collaboration is greater than ever. Traditional engineering workflows often relied on on-premises servers, powerful local machines, and fragmented communication tools. But as projects grow in complexity and teams become more global, these systems can no longer keep up. This is where cloud computing steps in—reshaping how engineers design, simulate, collaborate, and deliver results. What is Cloud Computing in Engineering? Cloud computing refers to the use of remote servers hosted on the internet to store, process, and analyze data. Instead of being limited by the hardware capacity of a single computer or office server, engineers can leverage vast, scalable computing resources from cloud providers. This shift enables engineers to run simulations, share designs, and manage data more efficiently. Key Be...

SWAP Space Management

Swap-Space Management

* Modern systems typically swap out pages as required, other than swapping out entire processes. Hence the swapping system is bit of the virtual memory management system.
* Managing swap space is clearly an important task for modern OSes.

Swap-Space Use
* The amount of swap space required by an OS varies greatly according to how it is used. Some systems require an amount equal to physical RAM; some want a more of that; some want an amount same to the amount by which virtual memory exceeds physical RAM, and some systems use less or none at all!
* Some systems support more swap spaces on separate disks in order to speed up the virtual memory system.

Swap-Space Location
Swap space can be visibally located in one of two locations:
* As a large file which is part of the regular file system. This is easy to implement, but 
inefficient. Not only must the swap space be processed through the directory system, the file is also subject to fragmentation issues. Caching the block location helps in detecting the physical blocks, but that is not a complete fix.
* As a raw partition, possibly on a single or little-used disk. This permits the OS more control over swap space management, which is usually faster and more efficient. 
Fragmentation of swap space is generally not a big issue, as the space is retrieved every time the system is rebooted. The downside of placing swap space on a raw splitting is that it can only be grown by resplittening the hard drive.

Swap-Space Management: An Example
* Historically OSes swapped out entire processes as required. Modern systems swap out only individual pages, and only as required. (For example process code blocks and other blocks that have not been moved since they were originally loaded are normally just freed from the virtual memory system rather than copying them to swap space, because it is speeder to go detect them again in the file system and read them back in from there than to 
write them out to swap space and then read them again.)
* In the mapping system shown below for Linux systems, a map of swap space is kept in memory, where each entry matches to a 4K block in the swap space. Zeros implies free slots and non-zeros refer to how many processes have a mapping to that particular block (>1 for shared pages only.)

Popular posts from this blog

Abbreviations

No :1 Q. ECOSOC (UN) Ans. Economic and Social Commission No: 2 Q. ECM Ans. European Comman Market No : 3 Q. ECLA (UN) Ans. Economic Commission for Latin America No: 4 Q. ECE (UN) Ans. Economic Commission of Europe No: 5 Q. ECAFE (UN)  Ans. Economic Commission for Asia and the Far East No: 6 Q. CITU Ans. Centre of Indian Trade Union No: 7 Q. CIA Ans. Central Intelligence Agency No: 8 Q. CENTO Ans. Central Treaty Organization No: 9 Q. CBI Ans. Central Bureau of Investigation No: 10 Q. ASEAN Ans. Association of South - East Asian Nations No: 11 Q. AITUC Ans. All India Trade Union Congress No: 12 Q. AICC Ans. All India Congress Committee No: 13 Q. ADB Ans. Asian Development Bank No: 14 Q. EDC Ans. European Defence Community No: 15 Q. EEC Ans. European Economic Community No: 16 Q. FAO Ans. Food and Agriculture Organization No: 17 Q. FBI Ans. Federal Bureau of Investigation No: 18 Q. GATT Ans. General Agreement on Tariff and Trade No: 19 Q. GNLF Ans. Gorkha National Liberation Front No: ...

Operations on data structures

OPERATIONS ON DATA STRUCTURES This section discusses the different operations that can be execute on the different data structures before mentioned. Traversing It means to process each data item exactly once so that it can be processed. For example, to print the names of all the employees in a office. Searching It is used to detect the location of one or more data items that satisfy the given constraint. Such a data item may or may not be present in the given group of data items. For example, to find the names of all the students who secured 100 marks in mathematics. Inserting It is used to add new data items to the given list of data items. For example, to add the details of a new student who has lately joined the course. Deleting It means to delete a particular data item from the given collection of data items. For example, to delete the name of a employee who has left the office. Sorting Data items can be ordered in some order like ascending order or descending order depending ...

The Rise of Solar and Wind Energy: A Glimpse into a Sustainable Future

In the quest for a sustainable future, solar and wind energy systems have emerged as two of the most promising sources of renewable energy. As concerns about climate change and the depletion of fossil fuels grow, these technologies offer a pathway to a cleaner, more resilient energy grid. This blog post delves into the significance of solar and wind energy, their benefits, challenges, and the role they play in shaping a sustainable future. The Basics of Solar and Wind Energy Solar Energy Systems harness the power of the sun to generate electricity. The most common technology used is photovoltaic (PV) panels, which convert sunlight directly into electricity. Solar thermal systems, another approach, use mirrors or lenses to concentrate sunlight, generating heat that can be used to produce electricity. Solar energy is abundant, renewable, and available almost everywhere on Earth. Wind Energy Systems utilize wind turbines to convert the kinetic energy of wind into electrical energy. Thes...