Smart Grids and Energy Storage Systems: Powering the Future of Energy In today’s rapidly evolving energy landscape, the push towards sustainability, efficiency, and reliability is stronger than ever. Traditional power grids, though robust in their time, are no longer sufficient to meet the demands of a modern, digital, and environmentally conscious society. This is where smart grids and energy storage systems (ESS) come into play — revolutionizing how electricity is generated, distributed, and consumed. What is a Smart Grid? A smart grid is an advanced electrical network that uses digital communication, automation, and real-time monitoring to optimize the production, delivery, and consumption of electricity. Unlike conventional grids, which operate in a one-way flow (from generation to end-user), smart grids enable a two-way flow of information and energy. Key Features of Smart Grids: Real-time monitoring of power usage and quality. Automated fault detection and rapid restoration. Int...
CONTROL STATEMENTS Till now we know that the code in the C program is executed sequentially from the first line of the program to its last line. That is, the second statement is executed after the first, the third statement is executed after the second, so on and so forth. Although this is true, in some cases we want only selected statements to be executed. Control flow statements enable programmers to conditionally execute a particular block of code. There are three types of control statements: decision control (branching), iterative (looping), and jump statements. While branching means deciding what actions have to be taken, looping, on the other hand, decides how many times the action has to be taken. Jump statements transfer control from one point to another point. Decision Control Statements C supports decision control statements that can alter the flow of a sequence of instructions. These statements help to jump from one part of the program to another depending on whether a parti...