Skip to main content

Smart Grids and Energy Storage Systems

Smart Grids and Energy Storage Systems: Powering the Future of Energy In today’s rapidly evolving energy landscape, the push towards sustainability, efficiency, and reliability is stronger than ever. Traditional power grids, though robust in their time, are no longer sufficient to meet the demands of a modern, digital, and environmentally conscious society. This is where smart grids and energy storage systems (ESS) come into play — revolutionizing how electricity is generated, distributed, and consumed. What is a Smart Grid? A smart grid is an advanced electrical network that uses digital communication, automation, and real-time monitoring to optimize the production, delivery, and consumption of electricity. Unlike conventional grids, which operate in a one-way flow (from generation to end-user), smart grids enable a two-way flow of information and energy. Key Features of Smart Grids: Real-time monitoring of power usage and quality. Automated fault detection and rapid restoration. Int...

Application I/O Interface

Application I/O Interface

* User application access to a many types of different devices is accomplished through layering, and through encapsulating all of the device-specific code into device drivers, while application layers are gives with a common interface for all ( or at least large general categories of ) devices.
* Devices differ on many different dimensions, as outlined in Figure below:
* Most devices can be grouped as either block I/O, character I/O, memory mapped file access, or network sockets. A few devices are unusual, such as time-of-day clock and the system timer.
* Most OSes also have an escape, or back door, which permits applications to send 
commands directly to device drivers if needed. In UNIX this is the ioctl( ) system call ( I/O Control ). Ioctl( ) takes three arguments - The file descriptor for the device driver being processed, an integer indicating the desired function to be performed, and an address used for communicating or transferring additional information.

Block and Character Devices
* Block devices are processed a block at a time, and are indicated by a "b" as the first 
character in a long listing on UNIX systems. Operations supported adds read(), write( ), and seek( ).
• Accessing blocks on a hard drive directly ( without going by the file system
structure ) is called raw I/O, and can speed up specific operations by bypassing the 
buffering and locking normally conducted by the OS. ( It then becomes the application's responsibility to control those issues. )
• A new alternative is direct I/O, which uses the normal file system access, but 
which disables buffering and locking operations.
* Memory-mapped file I/O can be layered on high of block-device drivers.
• Other than reading in the entire file, it is mapped to a range of memory addresses, and then paged into memory as needed using the virtual memory system.
• Access to the file is then finished through normal memory accesses, rather 
than through write( ) and read( ) system calls. This approach is commonly used 
for executable program code.
* Character devices are implemented one byte at a time, and are indicated by a "c" in UNIX long listings. Supported operations include get( ) and put( ), with more advanced functionality such as reading an whole line supported by higher-level library routines.

Network Devices
* Because network process is inherently different from local disk access, most systems provide a separate interface for network devices.
* One common and famous interface is the socket interface, which acts like a cable or pipeline connecting two networked entities. Data can be put into the socket at one terminal, and read out sequentially at the other terminal. Sockets are generally full-duplex, allowing for bi-directional data transfer.
* The select( ) system call permits servers (or other applications ) to identify sockets which have data waiting, without having to poll all available sockets.

Clocks and Timers
* Three types of time services are commonly required in modern systems:
• Get the current time of day.
• Get the elapsed time ( system or wall clock ) since a before event.
• Set a timer to start event X at time T.
* Unfortunately time operations are not quality across all systems.
* A programmable interrupt timer, PIT can be used to start operations and to measure elapsed time. It can be set to start an interrupt at a specific future time, or to trigger interrupts periodically on a regular basis.
• The scheduler uses a PIT to start interrupts for ending time slices.
• The disk system may use a PIT to schedule timing maintenance cleanup, such as flushing buffers to disk.
• Networks use PIT to delete or repeat operations that are taking too long to 
complete. I.e. resending packets if an acceptence is not received before the timer goes off.
• More timers than actually subsist can be simulated by maintaining an ordered list of timer events, and setting the physical timer to go off when the next scheduled 
event should occur.
* On most systems the system clock is implemented by counting interrupts generated by the PIT. Unfortunately this is restricted in its resolution to the interrupt frequency of the PIT, and may be subject to some drift over time. An alternate approach is to provide direct access to a high frequency hardware counter, which provides much higher resolution and accuracy, but which does not support interrupts.

Blocking and Non-blocking I/O
* With blocking I/O a process is transfer to the wait queue when an I/O request is made, and moved back to the ready queue when the request completes, allowing other processes to run in the meantime.
* With non-blocking I/O the I/O request returns suddenly, whether the requested I/O operation has ( completely ) occurred or not. This permits the process to check for available data without getting hung completely if it is not there.
* One method for programmers to implement non-blocking I/O is to have a multi-threaded application, in which one thread makes blocking I/O calls ( say to read a keyboard or mouse ), while other threads continue to modify the screen or perform other tasks.
* A subtle difference of the non-blocking I/O is the asynchronous I/O, in which the I/O request returns immediately allowing the process to continue on with other tasks, and then the process is notified ( via changing a process variable, or a software interrupt, or a callback function ) when the I/O operation has completed and the data is available for use. ( The regular non-blocking I/O returns suddenly with whatever results are available, but does not complete the operation and notify the process later. )

Popular posts from this blog

Abbreviations

No :1 Q. ECOSOC (UN) Ans. Economic and Social Commission No: 2 Q. ECM Ans. European Comman Market No : 3 Q. ECLA (UN) Ans. Economic Commission for Latin America No: 4 Q. ECE (UN) Ans. Economic Commission of Europe No: 5 Q. ECAFE (UN)  Ans. Economic Commission for Asia and the Far East No: 6 Q. CITU Ans. Centre of Indian Trade Union No: 7 Q. CIA Ans. Central Intelligence Agency No: 8 Q. CENTO Ans. Central Treaty Organization No: 9 Q. CBI Ans. Central Bureau of Investigation No: 10 Q. ASEAN Ans. Association of South - East Asian Nations No: 11 Q. AITUC Ans. All India Trade Union Congress No: 12 Q. AICC Ans. All India Congress Committee No: 13 Q. ADB Ans. Asian Development Bank No: 14 Q. EDC Ans. European Defence Community No: 15 Q. EEC Ans. European Economic Community No: 16 Q. FAO Ans. Food and Agriculture Organization No: 17 Q. FBI Ans. Federal Bureau of Investigation No: 18 Q. GATT Ans. General Agreement on Tariff and Trade No: 19 Q. GNLF Ans. Gorkha National Liberation Front No: ...

Operations on data structures

OPERATIONS ON DATA STRUCTURES This section discusses the different operations that can be execute on the different data structures before mentioned. Traversing It means to process each data item exactly once so that it can be processed. For example, to print the names of all the employees in a office. Searching It is used to detect the location of one or more data items that satisfy the given constraint. Such a data item may or may not be present in the given group of data items. For example, to find the names of all the students who secured 100 marks in mathematics. Inserting It is used to add new data items to the given list of data items. For example, to add the details of a new student who has lately joined the course. Deleting It means to delete a particular data item from the given collection of data items. For example, to delete the name of a employee who has left the office. Sorting Data items can be ordered in some order like ascending order or descending order depending ...

Points to Remember

• A data structure is a particular way of storing and organizing data either in computer’s memory or on the disk storage so that it can be used efficiently. • There are two types of data structures: primitive and non-primitive data structures. Primitive data structures are the fundamental data types which  are supported by a programming language. Non-primitive data structures are those data structures which are created using primitive data structures. • Non-primitive data structures can further be classified into two categories: linear and non-linear data structures.  • If the elements of a data structure are stored in a linear or sequential order, then it is a linear data structure. However, if the elements of a data structure are not stored in sequential order, then it is a non-linear data structure.  • An array is a collection of similar data elements which are stored in consecutive memory locations. • A linked list is a linear data structure consisting of a grou...