Skip to main content

Noise Pollution Control in Industries: Strategies and Solutions

Noise pollution is a significant environmental issue, particularly in industrial settings. The constant hum of machinery, the clanging of metal, and the roar of engines contribute to a cacophony that can have serious health implications for workers and nearby residents. Addressing noise pollution in industries is not only a matter of regulatory compliance but also a crucial step in ensuring the well-being of employees and the community. Understanding Noise Pollution in Industries Industrial noise pollution stems from various sources such as heavy machinery, generators, compressors, and transportation vehicles. Prolonged exposure to high levels of noise can lead to hearing loss, stress, sleep disturbances, and cardiovascular problems. Beyond health impacts, noise pollution can also reduce productivity, increase error rates, and contribute to workplace accidents. Regulatory Framework Many countries have established regulations and standards to limit industrial noise. Organizations like t

Declaring Pointer Variables

Declaring Pointer Variables
The general syntax of declaring pointer variables can be given as below.
data_type *ptr_name;
Here, data_type is the data type of the value that the pointer will point to. For example,
int *pnum;
char *pch;
float *pfnum;
In each of the above statements, a pointer variable is declared to point to a variable of the specified data type. Although all these pointers (pnum, pch, and pfnum) point to different data types, they will occupy the same amount of space in the memory. But how much space they will occupy will depend on the platform where the code is going to run. Now let us declare an integer pointer variable and start using it in our program code.
int x= 10;
int *ptr;
ptr = &x;
In the above statement, ptr is the name of the pointer variable. The * informs the compiler that ptr is a pointer variable and the int specifies that it will store the address of an integer variable. 
An integer pointer variable, therefore, ‘points to’ an integer variable. In the last statement, ptr is assigned the address of x. The & operator retrieves the lvalue (address) of x, and copies that to the 
contents of the pointer ptr. Consider the memory cells given in Fig. Below
fig: Memory Representation
Now, since x is an integer variable, it will be allocated 2 bytes. Assuming that the compiler assigns it memory locations 1003 and 1004, the address of x (written as &x) is equal to 1003, that is the starting address of x in the memory. When we write, ptr = &x, then ptr = 1003.
We can ‘dereference’ a pointer, i.e., we can refer to the value of the variable to which it points by using the unary * operator as in *ptr. That is, *ptr = 10, since 10 is the value of x. Look at the following code which shows the use of a pointer variable:
#include <stdio.h>
int main()
{
int num, *pnum;
pnum = &num;
printf("\n Enter the number : ");
scanf("%d", &num);
printf("\n The number that was entered is : %d", *pnum);
return 0;
}
Output
Enter the number : 10
The number that was entered is : 10
What will be the value of *(&num)? It is equivalent to simply writing num.

Popular posts from this blog

FIRM

          A firm is an organisation which converts inputs into outputs and it sells. Input includes the factors of production (FOP). Such as land, labour, capital and organisation. The output of the firm consists of goods and services they produce.           The firm's are also classified into categories like private sector firms, public sector firms, joint sector firms and not for profit firms. Group of firms include Universities, public libraries, hospitals, museums, churches, voluntary organisations, labour unions, professional societies etc. Firm's Objectives:            The objectives of the firm includes the following 1. Profit Maximization:           The traditional theory of firms objective is to maximize the amount of shortrun profits. The public and business community define profit as an accounting concept, it is the difference between total receipts and total profit. 2. Firm's value Maximization:           Firm's are expected to operate for a long period, the

Introduction to C Programs

INTRODUCTION The programming language ‘C’ was developed by Dennis Ritchie in the early 1970s at Bell Laboratories. Although C was first developed for writing system software, today it has become such a famous language that a various of software programs are written using this language. The main advantage of using C for programming is that it can be easily used on different types of computers. Many other programming languages such as C++ and Java are also based on C which means that you will be able to learn them easily in the future. Today, C is mostly used with the UNIX operating system. Structure of a C program A C program contains one or more functions, where a function is defined as a group of statements that perform a well-defined task.The program defines the structure of a C program. The statements in a function are written in a logical series to perform a particular task. The most important function is the main() function and is a part of every C program. Rather, the execution o

Human Factors in Designing User-Centric Engineering Solutions

Human factors play a pivotal role in the design and development of user-centric engineering solutions. The integration of human-centered design principles ensures that technology not only meets functional requirements but also aligns seamlessly with users' needs, abilities, and preferences. This approach recognizes the diversity among users and aims to create products and systems that are intuitive, efficient, and enjoyable to use. In this exploration, we will delve into the key aspects of human factors in designing user-centric engineering solutions, examining the importance of user research, usability, accessibility, and the overall user experience. User Research: Unveiling User Needs and Behaviors At the core of human-centered design lies comprehensive user research. Understanding the target audience is fundamental to creating solutions that resonate with users. This involves studying user needs, behaviors, and preferences through various methodologies such as surveys, interview