Skip to main content

Quiz based on Digital Principles and Computer Organization

1) Base of hexadecimal number system? Answer : 16 2) Universal gate in digital logic? Answer : NAND 3) Memory type that is non-volatile? Answer : ROM 4) Basic building block of digital circuits? Answer : Gate 5) Device used for data storage in sequential circuits? Answer : Flip-flop 6) Architecture with shared memory for instructions and data? Answer : von Neumann 7) The smallest unit of data in computing? Answer : Bit 8) Unit that performs arithmetic operations in a CPU? Answer : ALU 9) Memory faster than main memory but smaller in size? Answer : Cache 10) System cycle that includes fetch, decode, and execute? Answer : Instruction 11) Type of circuit where output depends on present input only? Answer : Combinational 12) The binary equivalent of decimal 10? Answer : 1010 13) Memory used for high-speed temporary storage in a CPU? Answer : Register 14) Method of representing negative numbers in binary? Answer : Two's complement 15) Gate that inverts its input signal? Answer : NOT 16)...

Break and Continue Statements

Break and Continue Statements
break Statement
In C, the break statement is used to complete the implementation of the closes enclosing loop in which it appears. We have already seen its use in the switch statement. The break statement is mostly used with for, while, and do–while loops. When the compiler encounters a break statement, the control passes to the statement that follows the loop in which the break statement appears. Its syntax is 
quite simple, just type keyword break followed by a semi-colon.
break;
The example given below shows the manner in which break statement is used to terminate the loop in which it is embedded.
#include <stdio.h>
int main()
{
int i = 0;
while(i<=10)
{
if (i==5)
 break;
 printf("\t %d", i);
 i = i + 1;
}
return 0;
}
Output
0 1 2 3 4
As soon as i becomes equal to 5, the break statement is executed and the control jumps to the statement following the while loop.
Hence, the break statement is used to exit a loop from any point within its body, bypassing its normal termination expression. 

continue Statement
Like the break statement, the continue statement can only appear in the body of a loop. When the compiler encounters a continue statement, then the rest of the statements in the loop are skipped and the control is unconditionally transferred to the loop-continuation portion of the nearest enclosing loop. Its syntax is quite simple, just type keyword continue followed by a semi-colon.
continue;
Again like the break statement, the continue statement cannot be used without an enclosing for, while, or do–while loop. When the continue statement is encountered in the while loop and in the 
do–while loop, the control is transferred to the code that tests the controlling expression. However, if placed within a for loop, the continue statement causes a branch to the code that updates the loop variable. For example, consider the following code:
#include <stdio.h>
int main()
{
int i;
for(i=0; i<= 10; i++)
{
if (i==5)
continue;
 printf("\t %d", i);
}
return 0;
}
Output
0 1 2 3 4 6 7 8 9 10
Note that the code is meant to print numbers from 0 to 10. But as soon as i becomes equal to 5, the continue statement is encountered, so the printf() statement is skipped and the control 
passes to the expression that increments the value of i. 
Hence, we conclude that the continue statement is somewhat the opposite of the break statement. 
It forces the next iteration of the loop to take place, skipping any code in between itself and the test condition of the loop. It is generally used to restart a statement sequence when an error occurs.

Popular posts from this blog

Human Factors in Designing User-Centric Engineering Solutions

Human factors play a pivotal role in the design and development of user-centric engineering solutions. The integration of human-centered design principles ensures that technology not only meets functional requirements but also aligns seamlessly with users' needs, abilities, and preferences. This approach recognizes the diversity among users and aims to create products and systems that are intuitive, efficient, and enjoyable to use. In this exploration, we will delve into the key aspects of human factors in designing user-centric engineering solutions, examining the importance of user research, usability, accessibility, and the overall user experience. User Research: Unveiling User Needs and Behaviors At the core of human-centered design lies comprehensive user research. Understanding the target audience is fundamental to creating solutions that resonate with users. This involves studying user needs, behaviors, and preferences through various methodologies such as surveys, interview...

Introduction to C Programs

INTRODUCTION The programming language ‘C’ was developed by Dennis Ritchie in the early 1970s at Bell Laboratories. Although C was first developed for writing system software, today it has become such a famous language that a various of software programs are written using this language. The main advantage of using C for programming is that it can be easily used on different types of computers. Many other programming languages such as C++ and Java are also based on C which means that you will be able to learn them easily in the future. Today, C is mostly used with the UNIX operating system. Structure of a C program A C program contains one or more functions, where a function is defined as a group of statements that perform a well-defined task.The program defines the structure of a C program. The statements in a function are written in a logical series to perform a particular task. The most important function is the main() function and is a part of every C program. Rather, the execution o...

Performance

Performance ( Optional ) * The I/O system is a main factor in overall system performance, and can place heavy loads on other main components of the system ( interrupt handling, process switching, bus contention, memory access and CPU load for device drivers just to name a few. ) * Interrupt handling can be relatively costly ( slow ), which causes programmed I/O to be faster than interrupt driven I/O when the time spent busy waiting is not excessive. * Network traffic can also loads a heavy load on the system. Consider for example the sequence of events that occur when a single character is typed in a telnet session, as shown in figure( And the fact that a similar group of events must happen in reverse to echo back the character that was typed. ) Sun uses in-kernel threads for the telnet daemon, improving the supportable number of simultaneous telnet sessions from the hundreds to the thousands.   fig: Intercomputer communications. * Rather systems use front-end processor...